Вакуумный насос

14.11.2021

Вакуумный насос — устройство, служащее для удаления (откачки) газов или паров до определённого уровня давления (технического вакуума).

История развития вакуумной техники

Началом научного этапа в развитии вакуумной техники можно считать 1643 г., когда Торричелли впервые измерил атмосферное давление. Около 1650 года Отто фон Герике (Otto von Guericke) изобретает механический поршневой насос с водяным уплотнителем. Изучалось поведение различных систем и живых организмов в вакууме.

Наконец, во второй половине XIX в. человечество шагнуло в технологический этап создания вакуумных приборов и техники. Это было связано с изобретением ртутно-поршневого насоса в 1862 году и потребностью в вакуумировании со стороны нарождающейся электроламповой промышленности. Начинают изобретаться такие вакуумные насосы: вращательный (Геде, 1905), криосорбционный (Дж. Дьюар, 1906), молекулярный (Геде, 1912), диффузионный (Геде, 1913); манометры: компрессионный (Г. Мак-Леод, 1874), тепловой (М. Пирани, 1909), ионизационный (О. Бакли, 1916).

В СССР становление вакуумной техники началось с организации вакуумной лаборатории на ленинградском заводе «Светлана». Началось бурное развитие электроники и новых методов физики.

Принципы работы

Объёмные насосы осуществляют откачку за счёт периодического изменения объёма рабочей камеры. В основном они используются для получения предварительного разрежения (форвакуума). К ним относятся поршневые, жидкостно-кольцевые, ротационные (вращательные). Наибольшее распространение в вакуумной технике получили вращательные насосы.

К высоковакуумным механическим насосам относятся: пароструйные насосы (парортутные и паромасляные), турбомолекулярные насосы. Молекулярные насосы осуществляют откачку за счёт передачи молекулам газа количества движения от твёрдой, жидкой или парообразной быстродвижущейся поверхности. К ним относятся водоструйные, эжекторные, диффузионные молекулярные насосы с одинаковым направлением движения откачивающей поверхности и молекул газа и турбомолекулярные насосы с взаимно перпендикулярным движением твёрдых поверхностей и откачиваемого газа.

Классификация

Вакуумные насосы классифицируют как по типу вакуума, так и по устройству. Область давлений, с которой имеет дело вакуумная техника, охватывает диапазон от 105 до 10−12 Па. Степень вакуума характеризуется числом Кнудсена K n {displaystyle Kn} , определяемое как отношение средней длины свободного пробега молекул газа λ {displaystyle lambda } к линейному эффективному размеру вакуумного элемента L . {displaystyle L.} Эффективным размером принимается, например, быть расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода, расстояние между электродами прибора, размер пор в пористых телах.

Вакуумные насосы по назначению подразделяются на сверхвысоковакуумные, высоковакуумные, средневакуумные и низковакуумные, а в зависимости от принципа действия — на механические и физико-химические. Условно весь диапазон давлений для реальных размеров вакуумных приборов может быть разделён на поддиапазоны следующим образом:

  • Низкий вакуум:
λ ≪ L ; {displaystyle lambda ll L;} K n ≤ 5 ⋅ 10 − 3 ; {displaystyle Knleq 5cdot 10^{-3};} давление 105…102 Па (103…100 мм рт. ст.).
  • Средний вакуум:
λ ≥ L ; {displaystyle lambda geq L;} 5 ⋅ 10 − 3 < K n < 1 / 3 ; {displaystyle 5cdot 10^{-3}<Kn<1/3;} давление 102…10−1 Па (100…10−3 мм рт. ст.).
  • Высокий вакуум:
λ > L ; {displaystyle lambda >L;} K n ≥ 1 / 3 ; {displaystyle Kngeq 1/3;} давление 10−1…10−5 Па (10−3…10−7 мм рт. ст.).
  • Сверхвысокий вакуум:
λ ≫ L ; {displaystyle lambda gg L;} K n ≫ 1 / 3 ; {displaystyle Kngg 1/3;} давление 10−5 Па и ниже (10−7…10−11 мм рт. ст.).

Классификация насосов по конструктивному признаку

  • Механические
    • Поршневые (в том числе ртутно-поршневые)
    • Диафрагменные
    • Пластинчато-роторные (в том числе водокольцевые)
    • Винтовые
    • Рутса
    • Золотниковые
    • Спиральные
  • Магниторазрядные
  • Струйные
    • Паромасляные диффузионные
    • Паромасляные бустерные
  • Сорбционные
  • Криогенные

Вакуумные насосы также делят по физическим принципам их работы на газопереносные насосы и газосвязывающие насосы. Газопереносные насосы транспортируют частицы либо через некий рабочий объём (Поршневые насосы), либо путём передачи механического импульса частице (за счет столкновения). Некоторые насосы нуждаются в молекулярном течении переносимого вещества, другие — в ламинарном. Механические насосы подразделяются на объёмные и молекулярные.

Применение

Для получения той или иной степени вакуума требуются соответствующие насосы или их комбинация. Выбор насоса определяется родом и количеством пропускаемых насосом газов и диапазоном рабочих давлений насоса и его параметрами. Не существует такого насоса, с помощью которого можно было бы обеспечить получение вакуума во всем диапазоне давлений с приемлемой эффективностью.


Имя:*
E-Mail:
Комментарий: