Изогональное сопряжение

01.02.2021

Изогональное сопряжение — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.

Определение

Точки P {displaystyle P} и P ∗ {displaystyle P^{*}} называются изогонально сопряжёнными (устаревшие названия — изогональными, обратными) в треугольнике △ A B C {displaystyle riangle ABC} , если ∠ A B P = ∠ C B P ∗ {displaystyle angle ABP=angle CBP^{*}} , ∠ B A P = ∠ C A P ∗ {displaystyle angle BAP=angle CAP^{*}} , ∠ B C P = ∠ A C P ∗ {displaystyle angle BCP=angle ACP^{*}} . Корректность данного определения можно доказать через теорему Чевы в синусной форме, существует и чисто геометрическое доказательство корректности этого определения. Изогональное сопряжение — преобразование, ставящее точке в соответствие изогонально сопряжённую ей. На всей плоскости за исключением прямых, содержащих стороны треугольника, изогональное сопряжение является взаимно-однозначным отображением.

Свойства

  • Изогональное сопряжение оставляет на месте только центры вписанной и вневписанных окружностей.
  • Точка, изогонально сопряжённая точке на описанной окружности — бесконечно удалённая. Направление, задаваемое этой точкой, перпендикулярно прямой Симсона исходной точки.
  • Если точки P a {displaystyle P_{a}} , P b {displaystyle P_{b}} , P c {displaystyle P_{c}} симметричны точке P {displaystyle P} относительно сторон треугольника, то центр описанной окружности треугольника P a P b P c {displaystyle P_{a}P_{b}P_{c}} изогонально сопряжён точке P {displaystyle P} .
  • Если в треугольник вписан эллипс, то его фокусы изогонально сопряжены.
  • Проекции двух изогонально сопряжённых точек на стороны лежат на одной окружности (верно и обратное) . Центр этой окружности — середина отрезка между сопряжёнными точками. Частный случай — окружность девяти точек.
  • Последнее означает, что подерные окружности двух изогонально сопряженных точек совпадают. В частности, подерной окружностью ортоцентра и центра описанной окружности является окружность Эйлера. Подерной или педальной окружностью называют описанную окружность подерного треугольника.
  • Две точки треугольника изогонально сопряжены тогда и только тогда, когда произведения трёх их расстояний до трёх сторон треугольника равны .

Пары изогонально сопряженных линий

  • Образ прямой при изогональном сопряжении — коника, описанная около треугольника. В частности, изогонально сопряжены бесконечно удалённая прямая и описанная окружность, прямая Эйлера и гипербола Енжабека, ось Брокара и гипербола Киперта, линия центров вписанной и описанной окружности и гипербола Фейербаха.
  • Если коника α {displaystyle alpha } изогонально сопряжена прямой l {displaystyle l} , то трилинейные поляры всех точек на α {displaystyle alpha } будут проходить через точку, изогонально сопряжённую трилинейному полюсу l {displaystyle l} .
  • Некоторые известные кубики, например, кубика Томпсона (Thompson cubic), кубика Дарбу (Darboux cubic), кубика Нейберга (Neuberg cubic) изогонально самосопряжены в том смысле, что при изогональном сопряжении всех их точек в треугольнике снова получаются кубики.

Пары изогонально сопряжённых точек

  • Центр описанной окружности и ортоцентр (см. рисунок).
  • Точка пересечения медиан и точка Лемуана (точка пересечения симедиан).
  • Точка Жергонна и центр отрицательной гомотетии вписанной и описанной окружности.
  • Точка Нагеля и центр положительной гомотетии вписанной и описанной окружности (точка Веррьера).
  • Две точки Брокара
  • Точка Аполлония и точка Торричелли.
  • Центр вписанной окружности (инцентр) изогонально сопряжён сам себе.

Координатная запись

В барицентрических координатах изогональное сопряжение записывается как:

( x : y : z )   ↦ ( a 2 x : b 2 y : c 2 z ) {displaystyle (x:y:z) mapsto left({frac {a^{2}}{x}}:{frac {b^{2}}{y}}:{frac {c^{2}}{z}} ight)} ,

где a {displaystyle a} , b {displaystyle b} , c {displaystyle c} — длины сторон треугольника. В трилинейных координатах его запись имеет форму:

( x : y : z )   ↦ ( 1 x : 1 y : 1 z ) {displaystyle (x:y:z) mapsto left({frac {1}{x}}:{frac {1}{y}}:{frac {1}{z}} ight)} ,

поэтому они удобны при работе с изогональным сопряжением. В других координатах запись изогонального сопряжения более громоздка.

Вариации и обобщения

  • Аналогично можно определить изогональное сопряжение относительно многоугольника. Фокусы эллипсов, вписанных в многоугольник, также будут изогонально сопряжены. Однако не для всех точек изогонально сопряжённая точка будет определена: так, в четырёхугольнике геометрическое место точек, для которых изогональное сопряжение определено, есть некоторая кривая третьего порядка; для пятиугольника будет существовать лишь одна пара изогонально сопряжённых точек (фокусы единственного вписанного в него эллипса), а в многоугольниках с большим числом вершин в общем случае изогонально сопряжённых точек не будет.

Можно определить также изогональное сопряжение в тетраэдре, в трилинейных координатах оно будет записываться аналогично плоскому изогональному сопряжению.

  • С изогональным сопряжением тесно связано антигональное сопряжение, упоминаемое в статье теорема Понселе.

Следствия

  • Из изогонального сопряжения можно вывести теорему Паскаля.

Имя:*
E-Mail:
Комментарий: